Extremely Stable Thorium(IV) Dialkyl Complexes Supported by Rigid Tridentate 4,5-Bis(anilido)xanthene and 2,6-Bis(anilidomethyl)pyridine Ligands

Carlos A. Cruz, David J. H. Emslie, * Laura E. Harrington, James F. Britten and Craig M. Robertson

Department of Chemistry, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4M1.

emslied@mcmaster.ca

RECEIVED DATE (to be automatically inserted after your manuscript is accepted if required according to the journal that you are submitting your paper to)

TITLE RUNNING HEAD (Word Style "AF_Title_Running_Head"). If you are submitting your paper to a journal that requires a title running head (condensed title appearing at the top of the journal page), please provide a 50-character or less summary of the title of the manuscript.

*To whom correspondence should be addressed. Phone: 905-525-9140, Fax: 905-522-2509. E-mail: emslied@mcmaster.ca.

Abstract

A new NON-donor ligand, 4,5-bis(2,6-diisopropylanilino)-2,7-di-*tert*-butyl-9,9-dimethylxanthene (H₂[XA₂], **1**) was prepared by palladium-catalyzed coupling of 2,6-diisopropylaniline with the

appropriate dibromoxanthene precursor. Stable $K_2(dme)_2[XA_2]$ (2) and $Na_2[XA_2]$ (3) salts were accessible by deprotonation of H₂[XA₂] with KH in dme or NaH in toluene. The thermally unstable lithium salt of McConville's 2,6-bis(2,6-diisopropylanilidomethyl)pyridine ligand (Li₂[BDPP], 4) was isolated by deprotonation with *n*BuLi or LiCH₂SiMe₃ in hexanes at low temperature. Reaction of $[ThCl_4(dme)_2]$ with Li₂[BDPP] or M₂(dme)_n[XA₂] resulted in the formation of pentagonal bipyramidal [LThCl₂(dme)] complexes (L = BDPP, 5; XA₂, 6). Subsequent reaction of 5 or 6 with LiCH₂SiMe₃ gave base- and salt-free dialkyl complexes, $[LTh(CH_2SiMe_3)_2]$ (L = BDPP, 7; XA₂, 8), which are stable for days in solution at 90 and 70°C respectively. Complexes 5, 7 and 8 were also accessible by initial combination of 2 or 4 equivalents of LiCH₂SiMe₃ with [ThCl₄(dme)₂], followed by addition of H₂L. These reactions likely proceed by alkane elimination, but dialkyl or tetraalkyl thorium intermediates were not identified. The X-ray crystal structure of 8 suggests the presence of α -agostic C–H–Th interactions for both alkyl groups. In solution, 7 and 8 exhibit temperature dependent ${}^{1}J_{C,H}$ coupling constants for Th CH_2 , demonstrating the presence of α -agostic interactions which become increasingly favoured at lower temperature. Reaction of 5 with Li₂[BDPP] at 0°C or 7 with H₂[BDPP] at 100°C resulted in the formation of extremely sterically encumbered [Th(BDPP)₂] (9) which adopts a highly distorted 6-coordinate geometry with the four anilido groups arranged in an approximate tetrahedron around thorium. Bis-ligand complexes were not accessible with the XA₂ platform, presumably due to increased ligand rigidity.

KEYWORDS (Word Style "BG_Keywords"). If you are submitting your paper to a journal that requires keywords, provide significant keywords to aid the reader in literature retrieval.

BRIEFS (WORD Style "BH_Briefs"). If you are submitting your paper to a journal that requires a brief, provide a one-sentence synopsis for inclusion in the Table of Contents.

Introduction

Complexes of the early actinide elements, of which only thorium and uranium are naturally abundant and readily available, are unique due to the potential for significant covalency and *f*-orbital involvement in bonding.^{1,2} Actinides also tend to form complexes of high Lewis acidity and possess ionic radii which are similar or larger than those of the lanthanide ions, and significantly larger than those for transition metals in the same oxidation state [revised effective ionic radii (C.N. 6) of Shannon and Prewitt: U^{3+} 1.03, La^{3+} 1.03, Lu^{3+} 0.86, Th^{4+} 0.94, U^{4+} 0.89, Ce^{4+} 0.87, Hf^{4+} 0.71, Ti^{4+} 0.61, U^{5+} 0.76, Ta^{5+} 0.64, V^{5+} 0.54, U^{6+} 0.73, W^{6+} 0.60, Cr^{6+} 0.44 Å].³ These properties, in addition to the distinctly non-lanthanide-like variety of oxidation states accessible for several of the early actinides [*e.g.* U(III)-U(VI)],^{1,4} leads to the potential for early actinide complexes to facilitate unusual reactivity⁵ that may not be accessible elsewhere in the periodic table.

To date, organoactinide chemistry has been dominated by the use of carbocyclic ancillaries such as C_5R_5 and related ligands,^{6,7} the tetramethylphospholyl anion,⁸ dianionic C_8R_8 or pentalene⁹ ligands, carboranes,¹⁰ arenes,¹¹ and the cycloheptatrienyl trianion.¹² In contrast, the chemistry of non-carbocycle supported organoactinide complexes is much less developed, but is of great interest due to the enormous structural and electronic versatility afforded by such ligands.

Non-cyclopentadienyl actinide(IV) bis-hydrocarbyl (alkyl, aryl or allyl) complexes are particularly rare, and generally rely on the coordination of monoanionic ancillaries such as alkoxy/aryloxy (Th/U),¹³⁻ ¹⁶ amidinate (U),¹⁷ and tris(pyrazolyl)borate (U)¹⁸ ligands. Other ancillaries such as the popular βdiketiminato anion¹⁹ have not been reported to be effective in the preparation of actinide(IV) dialkyls,²⁰⁻ ²² perhaps due to provision of insufficient electronic saturation, a relatively small metal binding pocket, and a tendency towards ligand degradation reactions²⁰ under a variety of conditions.²³ The only dialkyl actinide(IV) complexes bearing a single dianionic, non-carbocyclic supporting ligand are [(^{DIPP}NCOCN)U(CH₂SiMe₃)₂] and [(^{*i*Bu}NON)M(R)₂] (M = Th or U; R = C₃H₅ or CH₂SiMe₃) reported very recently by Leznoff [$^{DIPP}NCOCN = O(CH_2CH_2NAr)_2$; $^{tBu}NON = O(SiMe_2NtBu)_2$; Ar = 2,6diisopropylphenyl].^{24,25}

We are interested in the preparation of non-carbocyclic organoactinide complexes as a result of their largely untapped potential in both traditional organometallic catalysis and in the development of novel reactivity. Of particular interest are thorium(IV) dialkyl complexes of sufficient thermal stability to allow investigation of reactivity over a wide temperature range, and to serve as precursors for the synthesis of new highly reactive organometallic derivatives. With this goal in mind, we have focused our efforts on the use of *extremely rigid and planar* tridentate ancillary ligands, and in particular those which provide a binding pocket of a suitable size to accommodate a large actinide metal, and contain only robust structural elements (*e.g.* avoidance of isolated imine groups).^{26,27}

Our preference for rigid ligands stems from the expectation that they will (a) allow access to coordination environments which are dictated by design rather than the preferences of the central metal and/or co-ligands, and (b) ensure that well intentioned steric bulk is not positioned in such a way as to significantly limit its effectiveness. As a result, various modes of decomposition are expected to become less favourable, especially those involving sterically hindered transition states or the formation of dinuclear or bis-ligand complexes. Rigid ligands are also expected to be more amenable to steric tuning since the effects of steric bulk are not easily mitigated by alterations in the ligand geometry or hapticity, and are therefore more predictable.

Herein we report the preparation of uniquely robust base- and salt-free thorium(IV) dialkyls, as well as dichloro and bis-ligand complexes, using the 2,6-bis(2,6-diisopropylanilidomethyl)pyridine dianion (BDPP, Scheme 1) and a new extremely rigid and planar NON-donor, 4,5-bis(2,6-diisopropylanilido)-2,7-di-*tert*-butyl-9,9-dimethylxanthene (XA₂, Scheme 2).

Results and Discussion

Ligand Synthesis: The new NON-donor proligand, $H_2[XA_2]$ (1), was synthesized in 86% isolated yield by Hartwig-Buchwald coupling of 4,5-dibromo-2,7-di-*tert*-butyl-9,9-dimethylxanthene with 2,6-diisopropylaniline (Scheme 1). Stirring $H_2[XA_2]$ with excess KH in 1,2-dimethoxyethane (dme) at room temperature for 3 hours gave base-stabilized $K_2(dme)_2[XA_2]$ (2) in 81% yield. Alternatively, basefree Na₂[XA₂] (3) is accessible by refluxing $H_2[XA_2]$ with a excess NaH in toluene for several days.

Scheme 1. Synthesis of proligand H₂XA₂ (1)

The NNN-donor ligand, H₂[BDPP] was prepared as reported by McConville *et al.* This ligand has previously been employed in titanium, zirconium and tantalum chemistry, using amine (H₂[BDPP] + $[M(NR_2)_n]$) or chlorotrimethylsilane (BDPP(SiMe_3)_2 + [MCl_n]) elimination to effect ligand attachment.²⁸⁻³⁰ An alkali or alkaline earth metal salt of the BDPP dianion, which would allow direct access to chloro complexes by salt metathesis, has not been reported. However, we found that reaction of H₂[BDPP] with two equivalents of an alkyl lithium reagent (LiCH₂SiMe₃ or *n*BuLi) in hexanes at – 78°C resulted in precipitation of base-free Li₂[BDPP] (4), which is isolated in 87% yield as a bright yellow solid (Scheme 2). This compound is unusually temperature sensitive, decomposing in minutes in benzene at room temperature.³¹ Solid **4** is also significantly decomposed after several hours at room temperature, but can be stored for weeks without appreciable decomposition at –30°C. Scheme 2. Preparation and thermal stability of 4.

Both the BDPP and XA₂ ligands are structurally related to the diamidoamine ligand $[(Me_3SiN(CH_2CH_2NSiMe_3)_2]^{2-}$ previously employed by Cloke *et al.* for the synthesis of dichloro and bis(ligand) thorium(IV) complexes.³² However, the rigidity of the ligand backbone increases dramatically in the order $[(Me_3SiN(CH_2CH_2NSiMe_3)_2]^{2-} < BDPP < XA_2.$

Dichloride Complexes: Reaction of one equivalent of Li₂[BDPP] (4) with [ThCl₄(dme)₂] in benzene³¹ at 0°C gave [(BDPP)ThCl₂(dme)] (5) in 51% yield. Similarly, [(XA₂)ThCl₂(dme)] (6) was isolated by reaction of Na₂[XA₂] (3) with [ThCl₄(dme)₂] in toluene at room temperature (69% yield; Scheme 3). In contrast, base-coordinated K₂(dme)₂[XA₂] (2) is considerably less reactive than 3, despite similar solubilities, and the reaction is only complete after refluxing in toluene for 12 hours.

Scheme 3. Synthesis of dichloro complexes 5 and 6.

Complex **5** could also be prepared by reaction of 2 equivalents of $LiCH_2SiMe_3$ with $[ThCl_4(dme)_2]$ for 1 hour at 0°C, followed by cooling to -78°C and addition of H₂BDPP. In this case, ligand attachment

likely proceeds by alkane elimination from a source of 'ThCl₂(CH₂SiMe₃)₂'. However, the reaction of LiCH₂SiMe₃ with [ThCl₄(dme)₂] forms a mixture of products, the nature of which has not been determined (Scheme 3). Nevertheless, this is the preferred route for the synthesis of **5** due to greater simplicity and an improved yield (85%). By contrast, attempts to prepare **6** by this method gave solutions containing $H_2[XA_2]$ and SiMe₄ as the only soluble products, presumably due to thermal decomposition of the alkyl thorium precursor in preference to reaction with the rigid $H_2[XA_2]$ proligand.

¹H NMR spectra of **5** and **6** between 20 and -90° C show the presence of one molecule of symmetrically coordinated dme and a lone *CH*Me₂ signal, consistent with *C*_{2v} symmetric pentagonal bipyramidal products. Single crystals of [(BDPP)ThCl₂(κ^2 -dme)]·2 toluene were grown by slow diffusion of hexanes into a toluene solution of **5** at -30° C. The X-ray crystal structure of **5** (Figure 1) confirms a distorted pentagonal bipyramidal geometry with the two chloride anions occupying apical positions [Cl(1)–Th–Cl(2) = 156.38(10)°; Th–Cl = 2.698(3) and 2.686(3) Å]. As anticipated, the BDPP ligand is approximately planar and binds thorium via short Th–N_{anilido} contacts [2.305(9) and 2.321(8) Å] and a longer Th–N_{py} bond [2.568(9) Å]. However, while N(1), N(3), O(1), O(2) and Th lie in a plane, the metal is located 0.33(1) Å above the N(1)–N(2)–N(3) plane of the BDPP ligand. In this way, only one chloro ligand is positioned directly between the bulky isopropyl groups, while the other is located in a more open region of the thorium coordination sphere. To accommodate the more sterically contentious chloride anion, both 2,6-diisopropylphenyl rings rotate to give C(14)···C(26) = 6.35(2) Å and C(17)···C(29) = 7.26(2) Å.

Figure 1. Molecular structure of **5** with thermal ellipsoids at the 50% probability level. Hydrogen atoms omitted for clarity.

The dme molecule is κ^2 -coordinated in the pentagonal plane, and is bound via long and unequal Th–O contacts {Th–O(1) = 2.674(8) and Th–O(2) = 2.724(8) Å}, likely due to steric pressure at the metal; *cf.* 2.564(8)-2.620(8) Å in [ThBr₄(κ^2 -dme)₂],³³ 2.620(5) Å in [LTh(NH₂)(κ^1 -dme)]⁻, and 2.613(3) Å in [LTh(Cl)(κ^1 -dme)]⁻ {L = 2,2'-methylene-bis(6-*tert*-butyl-4-methylphenolate)}.³⁴ In contrast, the Th–N_{py} bond {2.568(9) Å} is atypically short. For example, Th–N = 2.72(1)-2.80(1) Å in [Th(quiolinolate)₄(dmf)],³⁵ 2.730(6) Å in [{Th(OCHEt₂)₃(µ-OCHEt₂)(Py)}₂], 2.752(7) Å in *cis*-[Th(Q*t*Bu)₄(Py)₂],³⁶ and 2.662(8), 2.696(8) Å in *cis*-[Th(OC₆H₃Me₂-2,6)₄(Py)₂].³⁷ The only Th–NC₅R₅ bonds of comparable length are found in [Th(OC₆H₃tBu-2,6)₂(*C*,*N*-2,6-lutidinyl)₂] {2.61(1) Å}¹⁵ and [Th(BDPP)₂] (9) {2.615(6) Å, *vide infra*}. The former is a special case since significant delocalization of negative charge to the N-donor can occur. Therefore, the short Th–N_{py} bond lengths observed in this work are likely a result of incorporation of the pyridine unit into a rigid ligand framework, and perhaps the enhanced donor properties of N_{py} (relative to an unsubstituted pyridine) as a result of 2,6-dialkyl substitution. All other metal-ligand bonds are in the usual range. For comparison, Th–N_{anilido} = 2.327(6)-2.378(7) Å in [L₂ThCl]⁻ {L = 1,3-bis(2,6-diisopropylanilido)-propane}³⁸ and 2.299(7), 2.304(6) Å in

 $[Th{N(SiMe_3)_2}_2(NMePh)_2]^{39}$ while Th-Cl = 2.620(6)-2.697(1) Å in $[L_2ThCl_2]$ {L = Tp, ArC(NSiMe_3)_2 and HC(CPhNSiMe_3)_2; Ar = C_6H_2(CF_3)_3-2,4,6\}^{21,40} and 2.673(1), 2.721(2) Å in $[L'ThCl_2(THF)]$ {L' = Me_3SiN(C_2H_4NSiMe_3)_2}.³²

Dialkyl complexes: Reaction of the dichlorides, **5** and **6**, with two equivalents of LiCH₂SiMe₃ gave the base- and salt-free dialkyl complexes [LTh(CH₂SiMe₃)₂] {L = BDPP (**7**) and XA₂ (**8**)} in quantitative yield by ¹H NMR (68 and 63% isolated yields respectively). However, a more straightforward route to these complexes involved reaction of [ThCl₄(dme)₂] with four equivalents of LiCH₂SiMe₃ at 0°C, followed by addition of H₂[BDPP] or H₂[XA₂]. Using this method, which likely proceeds by alkane elimination⁶¹ from a source of 'Th(CH₂SiMe₃)₄(dme)_n', tan **7** and white **8** may be isolated in 82% and 49% yield respectively (Scheme 4).

Scheme 4. Synthesis of dialkyl complexes 7 and 8.

The initial reaction between $[ThCl_4(dme)_2]$ and LiCH₂SiMe₃ proceeds cleanly and reproducibly to form a product or mixture of products giving rise to a single set of OMe, OCH₂, SiMe₃ and CH₂SiMe₃ signals in the ¹H NMR spectrum at 20°C, with no change down to –90°C. Unfortunately, the oily nature and thermal instability (decomposition is complete after 1.5 hours at 20°C) of this material precluded its isolation. However, the formation of a tetraalkyl derivative⁴¹⁻⁴⁴ under the conditions described above seems likely given that $[Th(CH_3)_4(dmpe)_2]$,⁴¹ $[Th(CH_2Ph)_4]$,⁴⁴ $[Th(CH_2C_6H_3Me_2-3,5)_4]^{43}$ and $[Th(C_3H_5)_4]^{43}$ are formed in related reactions of $[ThCl_4L_x]$ {L = $(dmpe)_2$ or $(THF)_3$ } with 4 equivalents of LiR at temperatures below 0°C. That said, the involvement of ate-complexes structurally related to $[MeTh(\mu-Me)_6{Li(TMEDA)}_3]^{45}$ and $[UR_6Li_2L_x]^{46}$, or *in-situ* ligand deprotonation by remaining LiCH₂SiMe₃ cannot be ruled out.

At 60°C in d_8 -toluene, the ¹H and ¹³C NMR spectra of complexes 7 and 8 exhibit a single set of Th*CH*₂ and *CH*Me₂ resonances; the Th*CH*₂ resonance is located at –0.32 (7) or –0.17 (8) ppm in the ¹H NMR, and 89 (7) or 97 (8) ppm in the ¹³C NMR. However, upon cooling to –80°C, the ¹H and ¹³C NMR spectra of both complexes show two distinct CH₂SiMe₃ groups, two *CH*Me₂ signals and ligand backbone resonances consistent with loss of top-bottom symmetry to give a C_s symmetric product. The Th*CH*₂ resonances are located at 0.31 and –0.70 (7) or 0.52 and –0.68 (8) ppm in the ¹H NMR, and 78 and 98 (7) or 90 and 103 (8) ppm in the ¹³C NMR (Figure 2).

Figure 2. Variable temperature ¹H NMR spectra of 7 in d_8 -toluene (* = toluene).

X-ray quality single crystals of $[(XA_2)Th(CH_2SiMe_3)_2]$ ·toluene were grown by cooling a saturated toluene solution of **8** from room temperature to $-30^{\circ}C$, and to the best of our knowledge, **8** represents the first structurally characterized thorium dialkyl complex supported by a multidentate non-carbocyclic

ancillary. In the solid state (Figure 3), **8** is pentacoordinate and adopts a square pyramidal geometry which is strongly distorted in the square plane as a result of XA₂ ligand rigidity; the XA₂ ligand backbone is approximately planar, but thorium is located 0.475(6) Å above the NON ligand-plane. Consistent with the low temperature ¹H and ¹³C NMR spectra of **8**, the two alkyl groups are distinct; one is located approximately in the NON-plane, while the other is located directly above the plane. This arrangement, in conjunction with rotation of the two 2,6-diisopropylphenyl groups to give C(34)…C(44) = 7.514(9) Å and C(38)…C(48) = 4.995(9) Å, is adopted in order to minimize unfavourable steric interactions between metal-alkyl and ligand-isopropyl groups. Similar behaviour has been observed in other 5-coordinate dialkyl complexes in which a metal is flanked by bulky 2,6-diisopropylphenyl substituents.^{27,28,47}

Figure 3. Molecular structure of dialkyl complex **8** with thermal ellipsoids at the 50% probability level. Hydrogen atoms omitted for clarity.

As expected, the Th–N_{anilido} $\{2.292(4), 2.312(4) \text{ Å}\}$ bond lengths in **8** are very similar to those observed in complex **5**, and the Th–C $\{2.468(6), 2.485(6) \text{ Å}\}$ bond lengths fall within the range

observed for the other crystallographically characterized thorium(IV) trimethylsilylmethyl complexes: 2.48(2) and 2.54(2) Å in [{Me₂Si(C₅Me₄)₂}ThR₂],⁴⁸ 2.47(3) Å in [Cp*₂Th(CH₂tBu)R],⁴⁹ 2.438(16) and 2.485(18) Å in [(2,6-tBu₂H₃C₆O)₂ThR₂],¹³ and 2.488(2) and 2.460(9) Å in [Cp*(2,6tBu₂H₃C₆O)ThR₂]⁵⁰ (R = CH₂SiMe₃). Structurally characterized thorium diarylether or even arylether complexes have not previously been reported. However, the Th–O bond length in **8** {2.534(3) Å} is similar to those observed for coordinated dme {2.564(8)-2.620(8) Å}^{33,34} or THF {*e.g.* 2.53(1), 2.58(1) Å in [(COT)ThCl₂(THF)]⁵¹ and 2.520(7), 2.526(7) Å in [Cp*₂Th(NXyl)(THF)]⁵²}. This is perhaps surprising since a diarylether should be a considerably less effective donor than dme or THF. However, a short bond between thorium and the neutral donor of the ligand backbone was also observed in **5**, and this feature is likely a consequence of tridentate binding and BDPP and XA₂ ligand rigidity.

Of particular note are the Th–C–Si bond angles in **8** {127.6(3) and 126.8(3)°} which are both significantly larger than is typically observed for an sp³-hybridized carbon atom. Similar increases in M–C–Si or M–C–C (M = Th or U) bond angles have been observed in other trimethylsilylmethyl or neopentyl complexes and are attributed to α -agostic C–H–Th interactions.^{13,24,48-50} Further evidence for the presence of agostic interactions is provided by a ¹*J*_{C,H} of 102 Hz for the rapidly exchanging *CH*₂SiMe₃ groups in the ¹H-coupled ¹³C NMR spectrum of **8** in *d*₈-toluene at 50°C. This value is significantly lower than typically observed for an sp³-hybridized carbon atom and compares well with literature values for related complexes: 104 Hz in Leznoff's [(^{*H*u}NON)ThR₂],²⁵ 100 Hz in [Cp*(2,6-*t*Bu₂H₃C₆O)ThR₂],⁵⁰ 99 Hz in [{Me₂Si(C₅Me₄)₂}ThR₂],⁴⁸ and 98 Hz in [(2,6-*t*Bu₂H₃C₆O)₂ThR₂]¹³ (R = CH₂SiMe₃). A ¹*J*_{C,H} value of 103 Hz is observed for the *CH*₂SiMe₃ groups in **7** (60°C, C₇D₈).

Interestingly, upon lowering the temperature to -80° C, separate ${}^{1}J_{C,H}$ coupling constants for each CH₂SiMe₃ group were observed by fully-coupled HSQC NMR. These values (88 and 91 Hz for 7 and 81 and 88 Hz for 8) are considerably reduced relative to those obtained at 60°C, and suggest that for both complexes in solution, an equilibrium exists between products participating in α -agostic C–H–Th bonding to a greater or lesser extent (up to four α -agostic C–H–Th interactions⁴⁹ could occur in either 7 or 8), and that entropy favours less agostic products. Consequently, as the temperature is lowered, the

equilibrium shifts towards more agostic products, resulting in a decrease in the average ${}^{1}J_{C,H}$ coupling constant.⁵³

The weak and non-static nature of α -agostic interactions has previously been discussed,^{49,54} and temperature dependent ${}^{1}J_{E,H}$ coupling constants as a result of an equilibrium between an agostic and a non-agostic isomer have been reported for several related complexes. For example, ${}^{1}J_{C,H}$ for α -*CH*R₂ in [(κ^{3} -Tp')NbCl(cyclopropyl)(C₂Me₂)] varies from 102 Hz at 20°C to 93 Hz at -80°C,⁵⁵ and ${}^{1}J_{Si,H}$ in [Cp₂Ti(*t*BuC₂*SiH*Me₂)] varies from 123 Hz at 30°C to 93 Hz at -80°C.⁵⁶ A temperature dependent ${}^{1}J_{C,H}$ constant was also observed for α -*CH*₂Me in [(P₂N₂)Ta(Et)(C₂H₄)] (123 Hz at 77°C and 134 Hz at -40°C), but in this case it is due to a greater contribution from a β-agostic structure (versus an α -agostic structure) at lower temperature.⁵⁷

Dialkyl Complex Stability: Both dialkyl complexes exhibit remarkable thermal stability; $[(BDPP)Th(CH_2SiMe_3)_2]$ (7) is stable for days in toluene at 90°C and is only fully decomposed after 3 days at 110°C, while $[(XA_2)Th(CH_2SiMe_3)_2]$ (8) is stable at 70°C, but decomposes over several hours at 90°C. Tetramethylsilane was the only soluble product observed when the thermal decomposition of 7 or 8 was monitored by ¹H NMR spectroscopy. The greater stability of 7 could be a result of decreased ligand rigidity, allowing the ligand to form a more optimal metal binding pocket. However, Th–N_{amido} bond lengths in 8 are very similar to those observed in the dichloro BDPP complex (5) and in both cases, the ligand is approximately planar. Therefore, the greater stability of 7 is more likely due to improved donor properties of a pyridine versus a diarylether neutral donor, leading to increased electronic saturation at the metal centre.

The stability of **7** is particularly remarkable, and highlights the suitability of rigid tridentate ligands such as BDPP for the stabilization of organoactinide complexes. The thermal stability of most other non-cyclopentadienyl thorium(IV) dialkyl complexes has not been reported. However, for comparison, [Th(OC₆H₃*t*Bu₂-2,6)₂(CH₂SiMe₃)₂] decomposes over 36 hours at 60°C,¹³ [Cp*Th(OC₆H₃*t*Bu₂-2,6)₂(CH₂SiMe₃)₂] decomposes over 12 hours at 60°C,⁵⁰ [Cp*₂Th(CH₂SiMe₃)₂] decomposes over 36

hours at $85^{\circ}C$,⁴⁹ and [{Me₂Si(C₅Me₄)₂}Th(CH₂SiMe₃)₂] decomposes at $60^{\circ}C$.⁷ In fact, only [Cp*₂ThMe₂] is of similar thermal stability, being 50% decomposed after 1 week at $100^{\circ}C$.⁵⁸ In addition, while [(C₅R₅)₂ThR₂] complexes are reported to be extremely air sensitive,^{48,59} exposure of a solution of **7** in toluene to air for 5 minutes resulted in only 25% decomposition. By contrast, complex **8** is considerably more sensitive, decomposing after only seconds of exposure to air.

Bis-ligand Complexes: Addition of one equivalent of $H_2[BDPP]$ to a solution of $[(BDPP)Th(CH_2SiMe_3)_2]$ (7) followed by heating to 100°C for 24 hours in a sealed reaction vessel resulted in SiMe₄ elimination to form the bis-ligand complex, $[Th(BDPP)_2]$ (9) as a yellow-green solid in 37% isolated yield (Scheme 5). Alternatively, 9 may be synthesized by addition of benzene³¹ to 2 equivalents of Li₂[BDPP] (4) and $[ThCl_4(dme)_2]$ at -78°C followed by warming to room temperature.

Solution NMR spectra of 9 between 20 and -35° C (*d*₅-bromobenzene) are consistent with a highly symmetrical product containing a single *CH*Me₂ environment. Crystals of 9 suitable for X-ray diffraction were grown by cooling a saturated toluene solution of 9 from room temperature to -30° C (Figure 6). Complex 9 adopts an unusual 6-coordinate geometry in which the four amido donors form a distorted tetrahedron around thorium while the pyridine units are directed towards two of the edges (N2…N3) of the tetrahedron but offset towards the centre of the two smaller faces (defined by N3, N3)

and N2). Above each of the two larger faces (defined by N2, N2 and N3) of the tetrahedron are located three of the eight isopropyl groups (Figure 6b). In order to adopt such a distorted geometry, the two identical BDPP ligands are considerably twisted away from planarity and the C(4)–N(1)–Th angle is far from linear (165°). This situation likely arises due to severe steric crowding at the metal, resulting in a geometry influenced more strongly by the anionic N_{amido} donors than the neutral pyridine units. Steric pressure at the metal centre is also considered to be responsible for the significant difference in Th– N_{anilido} bond lengths {Th–N3 = 2.368(7) and Th–N2 = 2.488(6) Å}, as well as Th–N_{anilido} and Th–N_{py} bonds {Th–N_{py} = 2.615(6) Å} which are considerably longer than those observed in the structures of the dichloro BDPP (**5**) and dialkyl XA₂ (**8**) complexes.

Figure 4. Molecular structure of bis-ligand complex **9** with hydrogen atoms omitted for clarity. (a) and (b): ORTEPs with thermal ellipsoids at the 50% probability level. (c): space filling diagrams. Figure 4(b) highlights the distorted tetrahedral arrangement of $N_{anilido}$ donors around Th (dark blue lines) and the position of three isopropyl groups above each of the larger faces of the tetrahedron (dark red lines).

Attempts to prepare the analogous $[Th(XA_2)_2]$ complex by either alkane elimination or salt metathesis were unsuccessful: $[(XA_2)ThCl_2(dme)]$ (6) failed to react with $K_2(dme)_2[XA_2]$ (2) or $Na_2[XA_2]$ (3) at temperatures up to 110°C, and $[(XA_2)Th(CH_2SiMe_3)_2]$ (8) did not react with $H_2[XA_2]$ 15 (1) at temperatures ($\leq 70^{\circ}$ C) below the onset of thermal decomposition. This marked difference in BDPP and XA₂ ligand reactivity presumably stems from the enhanced rigidity of κ^3 -coordinated XA₂, which does not permit the type of ligand twisting observed in [Th(BDPP)₂] (9). As a result, κ^3 -*N*,*O*,*N*- or even κ^2 -*N*,*N*-donation, which would likely allow the xanthene backbone of XA₂ to adopt a butterfly conformation,⁶⁰ must be rendered sterically inaccessible, precluding bis-ligand complex formation.

Summary and Conclusions

A new extremely rigid and planar NON-donor ligand, H_2XA_2 (1), was prepared and is conveniently deprotonated to form stable disodium or dipotassium salts (2-3). The thermally unstable dilithium salt of a structurally related 2,6-bis(2,6-diisopropylanilidomethyl)pyridine ligand (Li₂BDPP; 4) was also isolated, and its availability is expected to extend the utility of this ligand, which until now could only be installed using amine or Me₃SiCl elimination.

For both the BDPP and XA₂ ligands, pentagonal bipyramidal [LThCl₂(dme)] (**5-6**) and 5-coordinate [LTh(CH₂SiMe₃)₂] (**7-8**) complexes were prepared by either salt metathesis or apparent alkane elimination. Alkane elimination has not previously been employed as a means of primary ancillary ligand attachment in actinide chemistry⁶¹ but has the potential to serve as a valuable tool for the direct synthesis of thorium dichloro and dialkyl complexes, especially when salt metathesis proves ineffective.

Despite a coordination number of only five, complexes 7 and 8 are remarkably robust, showing no sign of decomposition after several days at 70 and 90°C respectively. In fact, no other bis-trimethylsilylmethyl or bis-neopentyl thorium complexes, including $[Cp*_2Th(CH_2EMe_3)_2]$ (E = Si or C), have been reported to be of comparable thermal stability to 7. The availability of 7 and 8 is expected to provide a unique opportunity to study the reactivity and catalytic potential of non-carbocyclic dialkyl and related thorium complexes over a significant temperature range.

The greater stability of **7** is suspected to result from reduced Lewis acidity as a result of the enhanced donor properties of the central pyridine unit in BDPP, relative to the diarylether group of XA_2 . However, while the bis-ligand complex, $[Th(BDPP)_2]$ (**9**), is readily obtained by either alkane elimination or salt metathesis, [Th(XA₂)₂] proved inaccessible, likely due to the greater rigidity of XA₂. Since ligand redistribution (to form a complex containing more than one ancillary ligand as well as a more highly alkylated product) is a common decomposition pathway for early transition metal and f-block dialkyl complexes at elevated temperatures,^{13,62} the XA₂ ligand represents an important step in the design of ligands suitable for the formation of uniquely robust thorium dialkyls.

Future work will investigate the potential of **7-8** and closely related thorium dialkyl complexes in catalysis and as starting materials for the preparation of dihydride complexes and cationic alkyls. Efforts towards a new ligand which combines the rigidity of the XA_2 ligand with the more effective donor properties of BDPP are also underway.

Experimental Section

General Details. An argon-filled MBraun UNIlab glove box was employed for the manipulation and storage of all oxygen and moisture sensitive compounds (**2-9**), and all thermally unstable compounds were stored in a -30° C freezer within the glovebox. Reactions were performed on a double manifold high vacuum line using standard techniques,⁶³ and all reaction products were thoroughly dried *in vacuo*. Commonly utilized specialty glassware includes the swivel frit assembly, J-Young NMR tubes, and thick walled flasks equipped with Teflon stopcocks. A Fisher Scientific Ultrasonic FS-30 bath was used to sonicate reaction mixtures where indicated. Residual oxygen and moisture was removed from the argon stream by passage through an Oxisorb-W scrubber from Matheson Gas Products. Anhydrous 1,2-dme and diethylether were purchased from Aldrich. Hexanes, toluene and THF were initially dried and distilled at atmospheric pressure from CaH₂, sodium and sodium benzophenone ketal respectively. Unless otherwise noted, all proteo solvents were stored over an appropriate drying agent (1,2-dme, OEt₂, THF, toluene, C₆H₆ = Na/Ph₂CO; hexanes, O(SiMe₃)₂ = Na/Ph₂CO/tetraglyme) and introduced to reactions via vacuum transfer with condensation at -78° C. Deuterated solvents (ACP Chemicals) were dried over CaH₂ (CD₂Cl₂, C₆D₅Br) or Na/Ph₂CO (C₆D₆, *d*₈-toluene, *d*₈-THF).

 $Th(NO_3)_4(H_2O)_4$ purchased Strem Chemicals. was from SOCl₂, $O(SiMe_3)_2$, 2,6bis(bromomethyl)pyridine, tetraglyme, xanthone, AlMe₃ (2M in toluene), Pd(OAc)₂, NaOtBu, DPEPhos [bis{2-(diphenylphosphino)phenyl}ether], NaH, KH (30 wt.% in mineral oil), LiCH₂SiMe₃ (1.0M in pentane), *n*BuLi (2.0M in cyclohexane),⁶⁴ Fe powder and Br₂ were purchased from Sigma-Aldrich. 2,6-diisopropylaniline was purchased from Lancaster. Prior to use, solid LiCH₂SiMe₃ was obtained by removal of pentane in vacuo, solid KH was obtained by filtration and washing with hexanes, 2,6-diisopropylaniline was distilled from CaH₂, and tetraglyme was distilled from sodium/benzophenone ketal. H₂[BDPP],³⁰ 4,5-dibromo-2,7-di-*tert*-butyl-9,9-dimethylxanthene,⁶⁵ and ThCl₄(dme)₂³⁸ were prepared by literature procedures.

NMR spectroscopy (¹H, ¹³C{¹H}, DEPT-135, COSY, HSQC, HMBC) was performed on Bruker DRX-500 and AV-600 spectrometers. All ¹H NMR and ¹³C NMR spectra were referenced relative to SiMe₄ through a resonance of the employed deuterated solvent or proteo impurity of the solvent; C₆D₆ (δ 7.15 ppm), C₇D₈ (δ 7.09, 7.00, 6.98, 2.09), C₆D₅Br (δ 7.30, 7.02, 6.94 ppm), *d*₈-THF (3.58, 1.73 ppm), CD₂Cl₂ (5.32 ppm) for ¹H NMR, and C₆D₆ (δ 128.0 ppm), C₇D₈ (δ 137.86, 129.24, 128.33, 125.49, 20.4), C₆D₅Br (δ 130.9, 129.3, 126.1, 122.3 ppm), *d*₈-THF (67.57, 25.37 ppm), CD₂Cl₂ (54.0 ppm) for ¹³C NMR.

Combustion elemental analyses were performed on a Thermo EA1112 CHNS/O analyzer by Dr. Steve Kornic of this department. X-ray crystallographic analyses were performed on suitable crystals coated in Paratone oil and mounted on a P4 diffractometer with a Bruker Mo rotating-anode generator and a SMART1K CCD area detector in the McMaster Analytical X-Ray (MAX) Diffraction Facility. Herein, Q = quaternary, Ar = 2,6-diisopropylphenyl and the *ipso* carbon refers to the carbon attached to nitrogen, Py and Xanth refer to the pyridine and xanthene backbones of the BDPP and XA₂ ligands respectively, and CH¹ and CH³ refer to the 1- and 3-positions of the Xanthene backbone (*para* and *ortho* respectively to the amido group in XA₂).

H₂(XA₂) (1): 4,5-dibromo-2,7-di-*tert*-butyl-9,9-dimethylxanthene (10.00 g, 20.82 mmol), 2,6diisopropylaniline (7.85 mL, 41.64 mmol), NaO^tBu (5.60 g, 58.30 mmol), Pd(OAc)₂ (40 mg, 0.21 18 mmol) and DPEPhos (167 mg, 0.31 mmol) in toluene (150 mL) were heated to 100°C for 16 hours. The reaction mixture was then quenched with water, extracted into toluene (3 x 50 mL), dried over MgSO4 and concentrated to approximately 30 mL. Recrystallization from a hot ethanol/toluene (10:1) solution gave **1** as a white solid (12.02 g, 17.86 mmol) in 86% yield. ¹H NMR (C₆D₆, 600 MHz): δ 7.26-7.21 (m, 6H, Ar-*H*), 6.99 (d, 2H, *J* 1.94 Hz, C*H*³), 6.51 (d, 2H, *J* 1.94 Hz, C*H*¹), 5.93 (s, 2H, N*H*), 3.47 (sept, 4H, *J* 6.88 Hz, C*H*Me₂), 1.98 (s, 18H, C*Me*₃), 1.68 (s, 6H, C*Me*₂), 1.18 (d, 12H, *J* 6.88 Hz, CH*Me*₂), 1.14 (d, 12H, *J* 6.88 Hz, CH*Me*₂). ¹³C {¹H} NMR (C₆D₆, 125 MHz): δ 147.8 (Ar-C_{ipso}), 146.1, 136.4, 135.9 (Xanth-*Q*), 136.2 (Ar-C_{ortho}), 129.4 (Ar-CH_{para}), 124.3 (Ar-CH_{meta}), 111.9 (CH³), 108.1 (CH¹), 35.1 (CMe₂), 34.8 (CMe₃), 32.9 (C*Me*₂), 31.7 (C*Me*₃), 28.7 (CHMe₂), 24.7, 23.5 (CH*Me*₂). Anal. Calcd. for C₄₇H₆₄N₂O: C, 83.88; H, 9.58; N, 4.16. Found: C, 83.91; H, 9.64; N, 4.00.

K₂(**dme**)₂[**X**A₂] (2): KH (0.120 g, 3.00 mmol) and H₂[XA₂] (0.750 g, 1.11 mmol) in dme (60 mL) were stirred at room temperature for 5 h. The solution was filtered to remove excess KH. Solvent was removed *in vacuo* and hexamethyldisiloxane (30 mL) was added, followed by sonication. The solution was cooled to -78° C and filtered on a pre-cooled frit to obtain 0.756 g (0.81 mmol, 73%) of **2** as a white solid. ¹H NMR (C₆D₆, 600 MHz): δ 7.29 (d, 4H, *J* 7.53 Hz, Ar-*H*), 7.14 (t, 2H, *J* 7.53 Hz, Ar-*H*), 6.57 (d, 2H, *J* 1.95 Hz, CH³), 6.18 (d, 2H, *J* 1.95 Hz, CH¹), 3.00 (sept, 4H, *J* 6.90 Hz, CHMe₂), 2.97 (s, 8H, OCH₂), 2.83 (s, 12H, OCH₃), 1.90 (s, 6H, CMe₂), 1.40 (s, 18H, CMe₃), 1.29 (d, 12H₂, *J* 6.77 Hz, CHMe), 1.16 (d, 12H₂, *J* 7.04 Hz, CHMe). ¹³C {¹H} NMR (C₆D₆, 125 MHz): δ 154.1 (Ar-C_{ipso}), 149.2 (Ar-C_{ortho}), 147.7, 143.0, 138.6, 132.9 (Xanth-*Q*), 124.3 (Ar-CH_{para}), 120.6 (Ar-CH_{meta}), 109.1 (CH¹), 100.8 (CH³), 71.7 (OCH₂), 58.7 (OMe), 36.4 (CMe₂), 35.6 (CMe₃), 32.8 (CMe₃), 31.2 (CMe₂), 28.7 (CHMe₂), 25.5, 24.8 (CHMe₂). Anal. Calcd. for C₅₅H₈₂N₂O₅K₂: C, 71.07; H, 8.89; N, 3.01. Found: C, 71.16; H, 8.86; N, 3.10.

Na₂[XA₂] (3): NaH (0.100 g, 4.17 mmol) and H₂[XA₂] (0.700 g, 1.04 mmol) were refluxed in toluene (60 mL) for 2-12 days.⁶⁶ The solution was then filtered to remove excess NaH, solvent was removed *in vacuo*, and hexamethyldisiloxane (30 mL) was added. Sonication and filtration gave 0.555 g (0.866 mmol, 84%) of **3** as a white solid. ¹H NMR (C₆D₆, 600 MHz): δ 7.28 (d, 4H, *J* 7.65 Hz, Ar-*H*), 7.19 (t, 19

2H, *J* 7.6 Hz, Ar-*H*), 6.67 (d, 2H, *J* 2.0 Hz, C*H*³), 6.34 (d, 2H, *J* 2.0 Hz, C*H*¹), 2.98 (sept, 4H, *J* 6.9 Hz, C*H*Me₂), 1.81 (s, 6H, C*Me*₂), 1.35 (s, 18H, C*Me*₃), 1.29 (d, 12H, *J* 6.8 Hz, CH*Me*₂), 0.99 (d, 12H, *J* 7.1 Hz, CH*Me*₂). ¹³C {¹H} NMR (C₆D₆, 125 MHz): δ 151.8, 148.8, 146.2, 133.0 (Xanth-*Q*), 137.4 (Ar-C_{ipso}), 128.6 (Ar-C_{ortho}), 125.0 (Ar-CH_{meta}), 121.2 (Ar-CH_{para}), 109.4 (CH³), 101.2 (CH¹), 35.8 (CMe₂), 34.4 (CMe₃), 31.4 (C*Me*₃), 28.3 (C*Me*₂), 27.7 (CHMe₂), 24.0, 23.4 (CH*Me*₂). Anal. Calcd. for C₄₇H₆₂N₂Na₂O: C, 78.73; H, 8.72; N, 3.91. Found: C, 79.09; H, 8.65; N, 3.96.

Li₂[BDPP] (4): 2.0 M ⁿBuLi in cyclohexane (2.20 mL, 4.37 mmol) was added dropwise to 2,6-bis(2,6-diisopropylanilinomethyl)pyridine (1.00 g, 2.19 mmol) in hexanes (30 mL) at -78° C. After stirring at -78° C for 5 min. the solution was warmed to -45° C for 5 min to give a yellow/brown solution with large amounts of yellow precipitate. The mixture was then re-cooled to -78° C and filtered quickly on a precooled frit to provide 4 as a yellow solid (0.898 g, 1.91 mmol) in 87% yield. ¹H NMR (*d*₈-THF, -30° C, 500 MHz): δ 7.58 (t, 1H, *J* 7.3 Hz, py-C*H*), 7.44 (d, 2H, *J* 7.3 Hz, py-C*H*), 6.71 (d, 4H, *J* 7.3 Hz, Ar-*H*), 6.23 (t, 2H, *J* 7.3 Hz, Ar-*H*), 4.78 (s, 4H, NC*H*₂), 3.73 (sept, *J* 6.9 Hz, C*H*Me₂), 1.11 (d, 24H, *J* 6.7 Hz, CH*M*e₂). ¹³C {¹H} NMR (*d*₈-THF, -30° C, 125 MHz): δ 166.4 (Py-C_{ortho}), 160.1 (Ar-C_{ipso}), 138.5 (Ar-C_{ortho}), 133.0 (Py-CH_{para}), 120.8 (Ar-CH_{meta}), 115.9 (Py-CH_{meta}), 110.2 (Ar-CH_{para}), 62.4 (NCH₂), 25.5 (CHMe₂), 21.0 (CH*M*e₂). Anal. Calcd. for C₃₁H₄₁N₃Li₂: C, 79.29; H, 8.80; N 8.95. Found: C, 79.15; H, 9.21; N, 8.49.

[(BDPP)ThCl₂(dme)] (5): Method A. ThCl₄(dme)₂ (0.600 g, 1.08 mmol) and LiCH₂SiMe₃ (0.204 g, 2.17 mmol) in toluene (60 mL) were stirred for 1 h at -78° C followed by 1 h at 0°C. A solution of 2,6-bis(2,6-diisopropylanilinomethyl)pyridine (0.620 g, 1.35 mmol) in toluene (10 mL) was then added dropwise. The solution was allowed to warm to room temperature over ca. 2 hours, stirred for an additional 12 h, and then filtered to remove lithium salts. Solvent was removed *in vacuo*, and hexanes (30 mL) were added, followed by sonication and filtration to give **5** as a white solid (0.781 g, 0.92 mmol) in 85% yield. **Method B.** ThCl₄(dme)₂ (0.140 g, 0.25 mmol) in benzene (10 mL) was placed in an ice-water bath (the majority of the solution does not freeze, despite the 6°C freezing point of benzene). A solution of Li₂[BDPP] (0.119 g, 0.25 mmol) in benzene³¹ (5 mL) was added dropwise (over

1-2 min). The solution was stirred for one hour, followed by filtration and removal of solvent *in vacuo*. Hexanes (10 mL) were added, followed by sonication and filtration to give **5** as a white solid (0.109 g, 0.13 mmol) in 51% yield. ¹H NMR (C₆D₅Br, 600 MHz): δ 7.24 (t, 1H, *J* 7.6 Hz, py-C*H*), 7.17 (m, 6H, Ar-*H*), 6.85 (d, 2H, *J* 7.6 Hz, py-C*H*), 5.27 (s, 4H, NC*H*₂), 4.19 (sept, *J* 6.7 Hz, C*H*Me₂), 3.42 (s, 2H, OC*H*₂), 2.38 (s, 3H, OC*H*₃), 1.42, 1.15 (d, 24H, *J* 6.7 Hz, CH*Me*₂). ¹³C {¹H} NMR (C₆D₆, 125 MHz): δ 165.0 (Py-Cortho), 148.1 (Ar-Cipso), 147.6 (Ar-Cortho), 137.4 (Py-CH_{para}), 125.3 (Ar-CH_{meta}), 116.8 (Py-CH_{meta}), 124.2 (Ar-CH_{para}), 70.6 (NCH₂), 27.8 (CHMe₂), 27.0, 24.3 (CH*Me*₂). Anal. Calcd. for C₃₅H₅₁Cl₂N₃O₂Th: C, 49.53; H, 6.06; N 4.95. Found: C, 49.85; H, 6.35; N, 4.37.

[(XA₂)ThCl₂(dme)] (6): ThCl₄(dme)₂ (0.416 g, 0.75 mmol) and K₂(dme)₂[XA₂] (0.700 g, 0.75 mmol) in toluene (60 mL) were stirred for 16 h at 100°C. The solution was cooled to room temperature, filtered and the solvent was removed *in vacuo*. Hexanes (30 mL) were added, followed by sonication and filtration to give **6** as a white solid (0.378 g, 0.36 mmol) in 59% yield. ¹H NMR (C₆D₆, 600 MHz): δ 7.31 (m, 4H, *J* 7.5 Hz, Ar-*H*), 7.25 (m, 2H, *J* 7.5 Hz, Ar-*H*), 6.85 (d, 2H, *J* 1.8 Hz, CH³), 5.89 (d, 2H, *J* 1.8 Hz, CH¹), 4.06 (sept, 4H, *J* 6.8 Hz, CHMe₂), 3.04 (s, 4H, OCH₂), 2.25 (s, 6H, OCH₃), 1.70 (s, 6H, CMe₂), 1.47 (d, 12H, *J* 6.7 Hz, CHMe₂), 1.25 (s, 18H, CMe₃), 1.09 (d, 12H, *J* 6.9 Hz, CHMe₂). ¹³C {¹H} NMR (C₆D₆, 125 MHz): δ 149.4 (Ar-C_{ortho}), 147.1, 145.9, 141.3 (Xanth-*Q*), 142.0 (Ar-C_{ipso}), 127.3 (Ar-CH_{para}), 125.4 (Ar-CH_{meta}), 111.7 (CH¹), 111.4 (CH³), 71.0 (OCH₂), 61.3 (OMe), 34.9 (CMe₃), 34.1 (CMe₂), 33.8 (CMe₂), 31.7 (CMe₃), 28.1 (CHMe₂), 27.2, 24.8 (CHMe₂). Anal. Calcd. for C₅₁H₇₂Cl₂N₂O₃Th: C, 57.57; H, 6.82; N, 2.63. Found: C, 57.76; H, 6.89; N, 2.49.

[(BDPP)Th(CH₂SiMe₃)₂] (7): Method A. ThCl₄(dme)₂ (0.750 g, 1.35 mmol) and LiCH₂SiMe₃ (0.510 g, 5.41 mmol) in toluene (60 mL) were stirred for 1 h at -78° C followed by 1 h at 0°C. The cloudy, colourless solution was then re-cooled to -78° C and a solution of 2,6-bis(2,6-diisopropylanilinomethyl)pyridine (0.620 g, 1.35 mmol) in toluene (10 mL) was added dropwise. The solution was allowed to warm to room temperature over ca. 2 hours, stirred for an additional 12 h, and then filtered to remove lithium salts. Solvent was removed *in vacuo* and hexamethyldisiloxane (30 mL) was added, followed by sonication and filtration to afford 7 as an off-white solid (0.949 g, 1.10 mmol)

in 82% yield. **Method B.** [(BDPP)ThCl₂(dme)] (0.150 g, 0.18 mmol) and LiCH₂SiMe₃ (0.033 g, 0.35 mmol) in toluene (15 mL) were stirred for 30 minutes at room temperature. The solution was filtered and solvent was removed *in vacuo*. Hexamethyldisiloxane (10 mL) was added, followed by sonication and filtration to afford **7** as an off-white solid (0.106 g, 0.12 mmol) in 68% yield. ¹H NMR (C₆D₆): δ 7.24 (m, 6H, Ar-*H*), 6.90 (t, 1H, *J* 7.7 Hz, py-C*H*), 6.49 (d, 2H, *J* 7.7 Hz, py-C*H*), 5.24 (s, 4H, NC*H*₂), 3.75 (sept, 4H, *J* 6.8 Hz, C*H*Me₂), 1.52 (d, 12H, *J* 6.8 Hz, CH*M*e₂), 1.26 (d, 12H, *J* 6.8 Hz, CH*M*e₂), -0.02 (s, 18H, Si*M*e₃), -0.32 (s, 4H, ThC*H*₂). ¹³C {¹H} NMR (C₆D₆, 125 MHz): δ 164.8 (Py-Cortho), 148.1 (Ar-Cipso), 141.9 (Ar-Cortho), 138.4 (Py-CH_{para}), 126.8 (Ar-CH_{meta}), 125.0 (Ar-CH_{para}), 117.8 (Py-CH_{meta}), 89.9 (ThCH₂), 68.7 (NCH₂), 28.7 (CHMe₂), 27.3, 24.9 (CH*M*e₂), 3.8 (Si*M*e₃). Anal. Calcd. for C₃₉H₆₃N₃Si₂Th: C, 54.33; H, 7.37; N, 4.87. Found: C, 54.10; H, 7.35; N, 4.69.

[(XA₂)Th(CH₂SiMe₃)₂] (8): Method A. Complex 8 was prepared in a similar fashion to 7 (method A) using 0.750 g (1.35 mmol) of ThCl₄(dme)₂, 0.510 g (5.41 mmol) of LiCH₂SiMe₃ and 0.909 g (1.35 mmol) of H₂[XA₂]. However, the crude filtered product was sonicated in hexanes (20 mL) before filtration to give 0.710 g of 8 as a white solid (0.711g, 0.66 mmol) in 49% yield. Method B. Complex 8 was prepared in a similar fashion to 7 (method B) using [(XA₂)ThCl₂(dme)] (0.250 g, 0.25 mmol) and LiCH₂SiMe₃ (0.048 g, 0.51 mmol). However, the crude filtered product was sonicated in hexanes (10 mL) before filtration to afford 8 as a white solid (0.175 g, 0.16 mmol) in 65% yield. ¹H NMR (d_8 toluene, 600 MHz): δ 7.26 (m, 6H, Ar-H), 6.77 (d, 2H, J 1.5 Hz, CH³), 6.00 (d, 2H, J 1.5 Hz, CH¹), 3.54 (sept, 4H, J 7.0 Hz, CHMe₂), 1.66 (s, 6H, CMe₂), 1.40 (d, 12H, J 7.0 Hz, CHMe₂), 1.16 (d, 12H, J 7.0 Hz, CHMe₂), 0.03 (s, 18H, SiMe₃), -0.17 (s, 4H, ThCH₂). ¹³C {¹H} NMR (*d*₈-toluene, 125 MHz): δ 146.2 (Ar-Cortho), 148.5 (Xanth-Q), 142.6 (Ar-Cipso), 130.3 (Ar-CHpara), 129.7 (Ar-CHmeta), 110.7 (CH¹), 110.9 (CH³), 35.6 (CMe₃), 35.5 (CMe₂), 31.4 (CMe₂), 32.1 (CMe₃), 29.5 (CHMe₂), 26.8, 25.5 (CHMe₂), 3.4 (SiMe₃). Note: ThCH₂ was not observed at room temperature but was observed at +50 or -80° C (see main text). Anal. Calcd. for C₅₅H₈₄N₂OSi₂Th: C, 61.31 H, 7.86; N, 2.60. Found: C, 61.41; H, 8.06; N, 2.37.

[Th(BDPP)₂] (9): Method A. [(BDPP)Th(CH₂SiMe₃)₂] (7) (0.200 g, 0.23 mmol) and 2,6-bis(2,6diisopropylanilinomethyl)pyridine (0.106 g, 0.23 mmol) in benzene (15 mL) were heated at 100°C for 24 hours in a sealed flask. Upon cooling, the reaction mixture was filtered and the solvent was reduced to ca. 1 mL in vacuo. Addition of hexamethyldisiloxane (10 mL) and sonication afforded 9 as a bright yellow-green solid (0.097 g, 0.085 mmol) in 37% isolated yield. Method B. ThCl4(dme)₂ (0.100 g, 0.18 mmol) and Li₂BDPP (0.170 g, 0.36 mmol) in benzene³¹ (15 mL) were stirred at 0°C for one hour (the majority of the solution does not freeze, despite the 6°C freezing point of pure benzene). The reaction mixture was then warmed to room temperature, filtered, and the solvent was removed in vacuo. Addition of hexanes (5 mL) and sonication gave a brown solid, which was collected by filtration and washed with hexanes several times. Recrystallization by cooling a hot, concentrated toluene solution of 9 to -30°C afforded the product as a bright yellow-green solid (0.109 g, 0.095 mmol) in 26% isolated yield. ¹H NMR (C₆D₆, 600 MHz): δ 7.10 (m, 12H, Ar-H), 6.81 (t, 2H, J 7.7 Hz, py-CH), 6.48 (d, 4H, J 7.7 Hz, py-CH), 4.87 (s, 8H, NCH₂), 3.00 (sept, 8H, J 6.5 Hz, CHMe₂), 1.01 (d, 24H, J 6.5 Hz, CHMe₂), 0.97 (d, 24H, J 6.6 Hz, CHMe₂). ¹³C {¹H} NMR (CD₂Cl₂, 125 MHz): δ 167.5 (Py-C_{ortho}), 156.1 (Ar-Cortho), 146.2 (Ar-Cipso), 138.0 (Py-CHmeta), 123.9 (Ar-CHmeta), 123.4 (Ar-CHpara), 117.5 (Py-CHpara), 68.0 (NCH₂), 29.5 (CHMe₂), 27.7, 24.1 (CHMe₂). Anal. Calcd. for C₆₂H₈₂N₆Th: C, 65.13; H, 7.23; N, 7.35. Found: C, 65.22; H, 7.36; N, 7.02.

Acknowledgement. D.J.H.E. thanks NSERC of Canada for a Discovery Grant and Canada Foundation for Innovation (CFI) and Ontario Innovation Trust (OIT) for New Opportunities Grants. D.J.H.E. also thanks McMaster University for support in the form of a start-up grant and C.A.C. thanks the Government of Ontario for an Ontario Graduate Scholarship (OGS).

Supporting Information Available: X-ray crystallographic data in PDF format and CIF files are available free of charge *via* the internet at http://pubs.acs.org.

References

- Burns, C. J.; Neu, M. P.; Boukhalfa, H.; Gutowski, K. E.; Bridges, N. J.; Rogers, R. D., Chapter
 3.3: The Actinides. In *Comprehensive Coordination Chemistry II*, Parkin, G. F. R., Ed., Elsevier
 Ltd.: San Diego, 2004; Vol. 3, p 189.
- (2) (a) Diaconescu, P. L.; Arnold, P. L.; Baker, T. A.; Mindiola, D. J.; Cummins, C. C. J. Am. Chem. Soc. 2000, 122, 6108. (b) Marks, T. J.; Kolb, J. R. Chem. Rev. 1977, 77, 263. (c) Kaltsoyannis, N.; Scott, P. Chem. Commun. 1998, 1665. (d) Nakai, H.; Hu, X.; Zakharov, L. N.; Rheingold, A. L.; Meyer, K. Inorg. Chem. 2004, 43, 855. (e) Castro-Rodriguez, I.; Olsen, K.; Gantzel, P.; Meyer, K. J. Am. Chem. Soc. 2003, 125, 4565. (f) Mazzanti, M.; Wietzke, R.; Pécaut, J.; Latour, J.-M.; Maldivi, P.; Remy, M. Inorg. Chem. 2002, 41, 2389. (g) Brennan, J. G.; Stults, S. D.; Andersen, R. A.; Zalkin, A. Organometallics 1988, 7, 1329. (h) Sockwell, S. C.; Hanusa, T. P. Inorg. Chem. 1990, 29, 76. (i) Jensen, M. P.; Bond, A. H. J. Am. Chem. Soc. 2002, 124, 9870. (j) Guillaumont, D. J. Phys. Chem. A 2004, 108, 6893. (k) Petit, L.; Joubert, L.; Maldivi, P.; Adamo, C. J. Am. Chem. Soc. 2006, 128, 2190. (l) Cloke, F. G. N.; Green, J. C.; Kaltsoyannis, N. Organometallics 2004, 23, 832. (m) Straka, M.; Hrobárik, P.; Kaupp, M. J. Am. Chem. Soc. 2005, 127, 2591. (n) Streitwieser, A., Jr.; Dempf, D.; La Mar, G. N.; Karraker, D. G.; Edelstein, N. J. Am. Chem. Soc. 1971, 63, 7343. (o) Pepper, M.; Bursten, B. E. Chem. Rev. 1991, 91, 719.
- (3) Shannon, R. D. Acta Cryst. 1976, A32, 751.
- (4) Evans, W. J.; Kozimor, S. A. Coord. Chem. Rev. 2006, 250, 911.
- (5) (a) Moloy, K. G.; Marks, T. J. J. Am. Chem. Soc. 1984, 106, 7051. (b) Katahira, D. A.; Moloy, K. G.; Marks, T. J. Organometallics 1982, 1, 1723. (c) Edwards, P. G.; Parry, J. S.; Read, P. W. Organometallics 1995, 14, 3649. (d) Radu, N. S.; Engeler, M. P.; Gerlach, C. P.; Tilley, T. D.; Rheingold, A. L. J. Am. Chem. Soc. 1995, 117, 3621. (e) Summerscales, O. T.; Cloke, F. G. N.;

Hitchcock, P. B.; Green, J. C.; Hazari, N. *Science* 2006, *311*, 829. (f) Castro-Rodriguez, I.;
Meyer, K. *J. Am. Chem. Soc.* 2005, *127*, 11242. (g) Castro-Rodriguez, I.; Nakai, H.; Zakharov,
L. N.; Rheingold, A. L.; Meyer, K. *Science* 2004, *305*, 1757. (h) Peters, R. G.; Warner, B. P.;
Burns, C. J. *J. Am. Chem. Soc.* 1999, *121*, 5585. (i) Pool, J. A.; Scott, B. L.; Kiplinger, J. L. *Chem. Commun.* 2005, 2591. (j) Parry, J.; Carmona, E.; Coles, S.; Hursthouse, M. *J. Am. Chem. Soc.* 1995, *117*, 2649. (k) Diaconescu, P. L.; Odom, A. L.; Agapie, T.; Cummins, C. C. *Organometallics* 2001, *20*, 4993. (l) Evans, W. J.; Kozimor, S. A.; Ziller, J. W. *J. Am. Chem. Soc.* 2003, *125*, 14264. (m) Korobkov, I.; Gambarotta, S. *Organometallics* 2004, *23*, 5379. (n)
Castro-Rodriguez, I.; Nakai, H.; Gantzel, P.; Zakharov, L. N.; Rheingold, A. L.; Meyer, K. *J. Am. Chem. Soc.* 2003, *125*, 15734. (o) Berthet, J.-C.; Ephritikhine, M. *New J. Chem.* 1992, *16*, 767. (p) Lukens, W. W., Jr.; Beshouri, S. M.; Blosch, L. L.; Andersen, R. A. *J. Am. Chem. Soc.* 1996, *118*, 901.

- (6) (a) Marks, T. J.; Day, V. W., Actinide Hydrocarbyl and Hydride Chemistry. In *Fundamental and Technological Aspects of Organo-f-Element Chemistry*, D. Reidel Publishing Company: 1985; p 115. (b) Takats, J., Organoactinide Complexes Containing Classical Ligands. In *Fundamental and Technological Aspects of Organo-f-Element Chemistry*, D. Reidel Publishing Company: 1985; p 159. (c) Evans, W. J. *J. Organomet. Chem.* 2002, *647*, 2. (d) Jia, L.; Yang, X.; Stern, C. L.; Marks, T. J. *Organometallics* 1997, *16*, 842. (e) Stubbert, B. D.; Stern, C. L.; Marks, T. J. *Organometallics* 1997, *16*, 842. (e) Stubbert, B. D.; Stern, C. L.; Marks, T. J. *Organometallics* 2003, *22*, 4836. (f) Golden, J. T.; Kazul'kin, D. N.; Scott, B. L.; Voskoboynikov, A. Z.; Burns, C. J. *Organometallics* 2003, *22*, 3971. (g) Baudry, D.; Bulot, E.; Ephritikhine, M. *Chem. Commun.* 1989, 1316.
- (7) Fendrick, C. M.; Schertz, L. D.; Day, V. W.; Marks, T. J. Organometallics 1988, 7, 1828.
- (8) (a) Cendrowski-Guillaume, S. M.; Nierlich, M.; Ephritikhine, M. J. Organomet. Chem. 2002, 643, 209. (b) Gradoz, P.; Baudry, D.; Ephritikhine, M.; Lance, M.; Nierlich, M.; Vigner, J. J. Organomet. Chem. 1994, 466, 107. (c) Gradoz, P.; Boisson, C.; Baudry, D.; Lance, M.; Nierlich,

M.; Vigner, J.; Ephritikhine, M. *Chem. Commun.* **1992**, 1720. (d) Gradoz, P.; Baudry, D.; Ephritikhine, M.; Nief, F.; Mathey, F. *Dalton Trans.* **1992**, 3047.

- (9) Seyferth, D. *Organometallics* **2004**, *23*, 3562.
- (10) Xie, Z. Coord. Chem. Rev. 2002, 231, 23.
- Baudry, D.; Bulot, E.; Charpin, P.; Ephritikhine, M.; Lance, M.; Nierlich, M.; Vigner, J. J.
 Organomet. Chem. 1989, 371, 155.
- (12) (a) Arliguie, T.; Lance, M.; Nierlich, M.; Vigner, J.; Ephritikhine, M. *Chem. Commun.* 1995, 183. (b) Arliguie, T.; Lance, M.; Nierlich, M.; Ephritikhine, M. *Dalton Trans.* 1997, 2501.
- (13) Clark, D. L.; Grumbine, S. K.; Scott, B. L.; Watkin, J. G. Organometallics 1996, 15, 949.
- (14) (a) Korobkov, I.; Athimoolam, A.; Gambarotta, S. *Organometallics* 2004, 23, 6248. (b) Baudin, C.; Ephritikhine, M. J. Organomet. Chem. 1989, 364, C1. (c) Baudin, C.; Baudry, D.;
 Ephritikhine, M.; Lance, M.; Navaza, A.; Nierlich, M.; Vigner, J. J. Organomet. Chem. 1991, 415, 59.
- (15) Beshouri, S. M.; Fanwick, P. E.; Rothwell, I. P.; Huffman, J. C. Organometallics 1987, 6, 2498.
- (16) Brunelli, M.; Perego, G.; Lugli, G.; Mazzei, A. Dalton Trans. 1979, 861.
- (17) Wedler, M.; Knösel, F.; Edelmann, F. T.; Behrens, U. Chem. Ber. 1992, 125, 1313.
- (18) (a) Domingos, Â.; Marques, N.; de Matos, A. P.; Santos, I.; Silva, M. Organometallics 1994, 13, 654. (b) Campello, M. P. C.; Calhorda, M. J.; Domingos, Â.; Galvão, A.; Leal, J. P.; de Matos, A. P.; Santos, I. J. Organomet. Chem. 1997, 538, 223.
- (19) Bourget-Merle, L.; Lappert, M. F.; Severn, J. R. Chem. Rev. 2002, 102, 3031.
- (20) Hitchcock, P. B.; Lappert, M. F.; Liu, D.-S. J. Organomet. Chem. 1995, 488, 241.
- (21) Hitchcock, P. B.; Hu, J.; Lappert, M. F.; Tian, S. J. Organomet. Chem. 1997, 536-537, 473.
- (22) (a) Wright, R. J.; Power, P. P.; Scott, B. L.; Kiplinger, J. L. Organometallics 2004, 23, 4801. (b)
 Antunes, M. A.; Dias, M.; Monteiro, B.; Domingos, Â.; Santos, I. C.; Marques, N. Dalton Trans.
 2006, 3368.

- (23) See for example: (a) Bailey, B. C.; Basuli, F.; Huffman, J. C.; Mindiola, D. J. Organometallics
 2006, 25, 3963. (b) Basuli, F.; Bailey, B. C.; Huffman, J. C.; Mindiola, D. J. Organometallics
 2005, 24, 3321. (c) Basuli, F.; Bailey, B. C.; Watson, L. A.; Tomaszewski, J.; Huffman, J. C.; Mindiola, D. J. Organometallics 2005, 24, 1886. (d) Basuli, F.; Tomaszewski, J.; Huffman, J. C.; Mindiola, D. J. Organometallics 2005, 24, 1886. (d) Basuli, F.; Tomaszewski, J.; Huffman, J. C.; Mindiola, D. J. J. Am. Chem. Soc. 2003, 125, 10170. (e) Hamaki, H.; Takeda, N.; Tokitoh, N. Organometallics 2006, 25, 2457. (f) Gregory, E. A.; Lachicotte, R. J.; Holland, P. L. Organometallics 2005, 24, 1803. (g) Yokota, S.; Tachi, Y.; Itoh, S. Inorg. Chem. 2002, 41, 1342.
- Jantunen, K. C.; Haftbaradaran, F.; Katz, M. J.; Batchelor, R. J.; Schatte, G.; Leznoff, D. B. *Dalton Trans.* 2005, 3083.
- (25) Jantunen, K. C.; Batchelor, R. J.; Leznoff, D. B. Organometallics 2004, 23, 2186.
- (26) (a) Black, D. G.; Swenson, D. C.; Jordan, R. F.; Rogers, R. D. *Organometallics* 1995, *14*, 3539.
 (b) Woodman, P. R.; Alcock, N. W.; Munslow, I. J.; Sanders, C. J.; Scott, P. *Dalton Trans.*2000, 3340. (c) Emslie, D. J. H.; Piers, W. E.; Parvez, M. *Dalton Trans.* 2003, 2615.
- (27) Tsurugi, H.; Matsuo, Y.; Yamagata, T.; Mashima, K. Organometallics 2004, 23, 2797.
- (28) Guérin, F.; McConville, D. H.; Vittal, J. J. Organometallics 1995, 14, 3154.
- (29) (a) Guérin, F.; McConville, D. H.; Vittal, J. J.; Yap, G. A. P. Organometallics 1998, 17, 5172.
 (b) Guérin, F.; McConville, D. H.; Vittal, J. J.; Yap, G. A. P. Organometallics 1998, 17, 1290.
 (c) Guérin, F.; McConville, D. H.; Payne, N. C. Organometallics 1996, 15, 5085.
- (30) Guérin, F.; McConville, D. H.; Vittal, J. J. Organometallics 1996, 15, 5586.
- (31) $\text{Li}_2[\text{BDPP}]$ (4) decomposes rapidly in toluene, even at -30°C.
- (32) Wilson, D. J.; Sebastian, A.; Cloke, F. G. N.; Avent, A. G.; Hitchcock, P. B. *Inorg. Chim. Acta* 2003, *345*, 89.
- (33) Rabinovich, D.; Scott, B. L.; Nielsen, J. B.; Abney, K. D. J. Chem. Crystallogr. 1999, 29, 243.
- (34) Korobkov, I.; Gambarotta, S.; Yap, G. P. A. Angew. Chem. Int. Ed. 2003, 42, 4958.
- Barton, R. J.; Dabeka, R. W.; Shengzhi, H.; Mihichuk, L. M.; Pizzey, M.; Robertson, B. E.;
 Wallace, W. J. Acta Cryst. 1983, C39, 714.

- (36) Clark, D. L.; Watkin, J. G. Inorg. Chem. 1993, 32, 1766.
- (37) Berg, J. M.; Clark, D. L.; Huffman, J. C.; Morris, D. E.; Sattelberger, A. P.; Streib, W. E.; van der Sluys, W. G.; Watkin, J. G. J. Am. Chem. Soc. 1992, 114, 10811.
- (38) Athimoolam, A.; Gambarotta, S.; Korobkov, I. Organometallics 2005, 24, 1996.
- (39) Barnhart, D. M.; Clark, D. L.; Grumbine, S. K.; Watkin, J. G. Inorg. Chem. 1995, 34, 1695.
- (40) (a) Domingos, Â.; Marçalo, J.; Santos, I.; de Matos, A. P. *Polyhedron* 1990, *9*, 1645. (b) Wedler, M.; Knösel, F.; Noltemeyer, M.; Edelmann, F. T.; Behrens, U. J. Organomet. Chem. 1990, *388*, 21.
- (41) Edwards, P. G.; Andersen, R. A.; Zalkin, A. J. Am. Chem. Soc. 1981, 103, 7792.
- (42) (a) Edwards, P. G.; Andersen, R. A.; Zalkin, A. Organometallics 1984, *3*, 293. (b) Carlson, C. N.; Hanusa, T. P.; Brennessel, W. W. J. Am. Chem. Soc. 2004, *126*, 10550. (c) Lugli, G.; Marconi, W.; Mazzei, A.; Paladino, N.; Pedretti, U. Inorg. Chim. Acta 1969, *3*, 253. (d) Brunelli, M.; Lugli, G.; Giacometti, G. J. Magn. Resonance 1973, *9*, 247. (e) Thiele, K.-H.; Opitz, R.; Köhler, E. Z. Anorg. Allg. Chem. 1977, 435, 45.
- (43) Eisen, M. S.; Marks, T. J. J. Am. Chem. Soc. 1992, 114, 10358.
- (44) Köhler, E.; Brüser, W.; Thiele, K.-H. J. Organomet. Chem. 1974, 76, 235.
- (45) Lauke, H.; Swepston, P. J.; Marks, T. J. J. Am. Chem. Soc. 1984, 106, 6841.
- (46) Sigurdson, E. R.; Wilkinson, G. Dalton Trans. 1977, 812.
- (47) (a) Aizenberg, M.; Turculet, L.; Davis, W. M.; Schattenmann, F.; Schrock, R. R. *Organometallics* 1998, *17*, 4795. (b) Cameron, T. M.; Gordon, J. C.; Michalczyk, R.; Scott, B.
 L. *Chem. Commun.* 2003, 2282. (c) Reardon, D.; Conan, F.; Gambarotta, S.; Yap, G.; Wang, Q. *J. Am. Chem. Soc.* 1999, *121*, 9318.
- (48) Fendrick, C. M.; Mintz, E. A.; Schertz, L. D.; Marks, T. J.; Day, V. W. Organometallics 1984, 3, 819.
- (49) Bruno, J. W.; Smith, G. M.; Marks, T. J.; Fair, C. K.; Schultz, A. J.; Williams, J. M. J. Am. Chem. Soc. 1986, 108, 40.

- (50) Butcher, R. J.; Clark, D. L.; Grumbine, S. K.; Scott, B. L.; Watkin, J. G. Organometallics 1996, 15, 1488.
- (51) Zalkin, A.; Templeton, D. H.; Le Vanda, C.; Streitwieser, A., Jr. Inorg. Chem. 1980, 19, 2560.
- (52) Straub, T.; Haskel, A.; Neyroud, T. G.; Kapon, M.; Botoshansky, M.; Eisen, M. S. Organometallics 2001, 20, 5017.
- (53) An alternative explanation in which the *strength* of E-H-M interactions are strongly affected by temperature has been found not to be responsible for the observed temperature dependent ${}^{1}J_{E,H}$ coupling constants in related Ti and Nb complexes (reference 56).
- (54) (a) Brookhart, M.; Green, M. L. H.; Wong, L.-L. Prog. Inorg. Chem. 1988, 36, 1. (b) Scherer,
 W.; McGrady, G. S. Angew. Chem. Int. Ed. 2004, 43, 1782.
- (55) Jaffart, J.; Cole, M. L.; Etienne, M.; Reinhold, M.; McGrady, J. E.; Maseras, F. *Dalton Trans*.2003, 4057.
- (56) (a) Ohff, A.; Kosse, P.; Baumann, W.; Tillack, A.; Kempe, R.; Görls, H.; Burlakov, V. V.;
 Rosenthal, U. *J. Am. Chem. Soc.* 1995, *117*, 10399. (b) Peulecke, N.; Ohff, A.; Kosse, P.;
 Tillack, A.; Spannenberg, A.; Kempe, R.; Baumann, W.; Burlakov, V. V.; Rosenthal, U. *Chem. Eur. J.* 1998, *4*, 1852.
- (57) Fryzuk, M. D.; Johnson, S. A.; Rettig, S. J. J. Am. Chem. Soc. 2001, 123, 1602.
- (58) Manriquez, J. M.; Fagan, P. J.; Marks, T. J. J. Am. Chem. Soc. 1978, 100, 3939.
- (59) Fagan, P. J.; Manriquez, J. M.; Maatta, E. A.; Seyam, A. M.; Marks, T. J. J. Am. Chem. Soc.
 1981, 103, 6650.
- (60) Xantphos, the neutral 4,5-bis(diphenylphosphino) analogue of XA₂, is typically *cis* κ²-*P*,*P*-coordinated with the xanthene backbone adopting a butterfly conformation: Kamer, P. C. J.; van Leeuwen, P. W. N. M.; Reek, J. N. H. *Acc. Chem. Res.* 2001, *34*, 895. However, a planar xanthene backbone has been observed in cationic complexes where κ³-*P*,*O*,*P*-coordination is favoured: (a) Zuideveld, M. A.; Swennenhuis, B. H. G.; Boele, M. D. K.; Guari, Y.; van Strijdonck, G. P. F.; Reek, J. N. H.; Kamer, P. C. J.; Goubitz, K.; Fraanje, J.; Lutz, M.; Spek, A.

L.; van Leeuwen, P. W. N. M. *Dalton Trans.*, **2002**, 2308. (b) Sandee, A. J.; van der Veen, L. A.; Reek, J. N. H.; Kamer, P. C. J.; Lutz, M.; Spek, A. L.; van Leeuwen, P. W. N. M. *Angew. Chem. Int. Ed.* **1999**, *38*, 3231.

- (61) Propene elimination from the reaction of [U(allyl)₄] with 2 ROH (R = Et, CHMe₂ or CMe₃) has been reported: see reference 16.
- (62) (a) Ernst, R. D.; Kennelly, W. J.; Day, C. S.; Day, V. W.; Marks, T. J. J. Am. Chem. Soc. 1979, 101, 2656. (b) Woodman, T. J.; Schormann, M.; Hughes, D. L.; Bochmann, M. Organometallics 2004, 23, 2972. (c) Bambirra, S.; Brandsma, M. J. R.; Brussee, E. A. C.; Meetsma, A.; Hessen, B.; Teuben, J. H. Organometallics 2000, 19, 3197. (d) Emslie, D. J. H.; Piers, W. E.; Parvez, M.; McDonald, R. Organometallics 2002, 21, 4226. (e) Trifonov, A. A.; Lyubov, D. M.; Fukin, G. K.; Baranov, E. V.; Kurskii, Y. A. Organometallics 2006, 25, 3935. (f) Duncan, A. P.; Mullins, S. M.; Arnold, J.; Bergman, R. G. Organometallics 2001, 20, 1808.
- Burger, B. J.; Bercaw, J. E., Vacuum Line Techniques for Handling Air-Sensitive
 Organometallic Compounds. In *Experimental Organometallic Chemistry A Practicum in Synthesis and Characterization*, American Chemical Society: Washington D.C., 1987; Vol. 357, p 79.
- (64) *n*BuLi solutions were titrated using N-benzylbenzamide (Sigma-Aldrich) in THF at -45°C:
 Burchat, A. F.; Chong, J. M.; Nielsen, N. J. Organomet. Chem. 1997, 542, 281.
- (65) Nowick, J. S.; Ballester, P.; Ebmeyer, F.; Julius Rebek, J. J. Am. Chem. Soc. 1990, 112, 8902.
- (66) The reaction time was not reproducible. Typically, no reaction is observed for days but once the reaction begins, it takes less than 24 hours to reach completion.

For Table of Contents Use Only

Extremely Stable Thorium(IV) Dialkyl Complexes Supported by Rigid Tridentate 4,5-Bis(anilido)xanthene and 2,6-Bis(anilidomethyl)pyridine Ligands

Carlos A. Cruz, David J. H. Emslie,* Laura E. Harrington, James F. Britten and Craig M. Robertson

Summary: Thorium(IV) dichloride and dialkyl complexes were prepared using a rigid 2,6-bis(anilidomethyl)pyridine ancillary (BDPP) and a new extremely rigid and planar 4,5-bis(anilido)xanthene ligand (XA₂). Despite a coordination number of only five, the dialkyl complexes, [LTh(CH₂SiMe₃)₂], show exceptional thermal stability, even in comparison with [Cp*₂Th(CH₂SiMe₃)₂]. The XA₂ dialkyl complex is one of only a handful of crystallographically characterized thorium dialkyl complexes, and is the only one supported by a multidentate non-carbocyclic ancillary.

TOC Graphic

